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Abstract-The transfer of chemically reactive species in the laminar flow over an elastic plane surface is 
considered. The viscous flow is driven solely by the linearly stretched surface and the reactive species is 
emitted from this sheet and undergoes an isothermal and homogeneous one-stage reaction as it diffuses into 
the surrounding fluid. A similarity transformation is devised, which reduces the concentration conservation 
equation to an ordinary differential equation. An exact analytical solution due to Crane [Z. Angew. 
Math. Phys. 21, 645647 (1970)] is adopted for the velocity, whereas the concentration field is obtained 
numerically. The computations showed that the principal effect of a destructive chemical reaction is to 
reduce the thickness of the concentration boundary layer and to increase the mass transfer rate from the 
stretching sheet to the surrounding fluid. This effect appeared to be more pronounced for a first-order 
reaction than for second- and third-order reactions. A nonuniqueness of the concentration distributions 

for generative first-order reactions was revealed by the computations. 

1. INTRODUCTION 

THE TRANSPORT of heat, mass and momentum in 
laminar boundary layers on moving inextensible or 
stretching surfaces has considerable practical rel- 
evance in, for example, electrochemistry [i, 21 and 
polymer processing [3,4]. The majority of the studies 
of these transport processes have so far been devoted 
to flows induced by surfaces moving with a constant 
velocity. Crane [5], however, considered the laminar 
boundary layer flow of a Newtonian fluid caused by 
a flat, elastic sheet whose velocity varies linearly with 
the distance from a fixed point on the sheet. The same 
problem has more recently been extended to fluids 
obeying non-Newtonian constitutive equations ; i.e. 
Rivlin-Ericksen fluids [6], micropolar fluids [7], 
second-order fluids [8], Walters’ liquid B’ [9], and 
power-law fluids [lo]. 

The heat transfer problem associated with the New- 
tonian boundary layer flow past a stretching sheet has 
been studied by several authors, e.g. refs. [5, 1 l&16]. 
By taking advantage of the mathematical equivalence 
of the thermal boundary layer problem with the con- 
centration analogue, results obtained for heat transfer 
characteristics can be carried directly over to the case 
of mass transfer by replacing the Prandtl number by 
the Schmidt number. However, the presence of a 
chemical reaction term in the mass diffusion equation 
generally destroys the formal equivalence with the 
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thermal energy problem and, moreover, generally pro- 
hibits the construction of the otherwise attractive simi- 

larity solutions. ChambrC and Young [ 171, for exam- 
ple, considered diffusion of a reactive species into the 
fluid flow past a wedge-shaped body and concluded 
that a similarity solution exists only in the case of 
stagnation point flow treated earlier by Chambrk [18]. 
Since numerical techniques for nonsimilar problems 
are significantly more time consuming than solution 
schemes devised for sets of ordinary differential equa- 
tions, Dural and Hines [19] recently advocated 
approximate methods like the Method of Weighted 
Residuals for many practical purposes. 

In the present study the transfer of a chemically 

reactive species in the laminar flow over a linearly 

stretching surface is considered. The reactive com- 
ponent given off by the surface undergoes an iso- 
thermal and homogeneous one-stage reaction as it 
diffuses into the surrounding fluid. By taking advan- 
tage of an explicit analytical solution of the momen- 

tum boundary layer problem [S], it will be dem- 
onstrated that similarity can be achieved also for the 
concentration field. Accurate numerical solutions of 
the resulting non-linear ordinary differential equation 
will be provided for first- and higher-order reactions at 
various rates, covering the range of Schmidt numbers 
from 0.01 to 100. Similarity solutions are generally 
rare and, to the best of our knowledge, no such solu- 
tion has so far been published for the concentration 
distribution in the presence of higher-order reactions. 

2. MATHEMATICAL FORMULATION 

We consider the steady and incompressible flow of 
a Newtonian fluid past a flat and impermeable elastic 
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NOMENCLATURE 

a constant [s ‘1 Greek symbols 

‘ concentration [kg m ‘J li dimensionless reaction-rate parameter, 

D molecular diffusion coefficient [m* s ‘1 k,,c’: ‘/u 

f dimensionless stream function similarity variable, equation (6b) 

A-,, reaction-rate constant [s- ’ (kg m ‘) ’ “1 ; dimensionless concentration. (‘:c,+ 

II order of reaction \’ kinematic fluid viscosity [m’s ‘1 

Nu, local Nusseh number, equation (15) i stream function [m’s ‘1. 

Re, local Reynolds number. U.X~/V 
sc Schmidt number, I’/ I) 
11 velocity component along the sheet Subscripts 

1’ velocity component normal to the sheet C concentration layer 

.Y coordinate along the sheet w wall condition 

1’ coordinate normal to the sheet. .Y local value. 

sheet. By applying two equal and opposite forces 
along the .x-axis, the sheet is being stretched with a 
speed proportional to the distance from the fixed ori- 
gin z = 0. The resulting motion of the otherwise 

quiescent fluid is thus caused solely by the moving 
surface. The continuity and momentum equations 

governing the flow in the viscous boundary layer along 
the stretching sheet become : 

subject to the boundary conditions 

u(.u, 0) = (/.Y (3a) 

Z’(.Y,O) = 0 (3b) 

U(X, 1’) --t 0 ?iS .I’ * ix,. (3c) 

Here, u and u are the components of the fluid velocity 
in the x- and y-directions, respectively, whereas 1’ 
denotes the constant kinematic viscosity of the fluid 
and a is a positive constant. It has implicitly been 
assumed that the diffusion rate at the stretching sheet 
results in a negligible normal velocity component. 

The concentration field c(.x, _r) is governed by the 
diffusion equation, which in the boundary layer 
approximation reduces to : 

where D is the diffusion coefficient of the diffusing 
species in the fluid, and k,, denotes the reaction-rate 
constant of an frth-order homogeneous and irre- 
versible reaction. Since the concentration of the reac- 
tant is maintained at a prescribed constant value c,, at 
the sheet and is assumed to vanish far away, the rel- 
evant boundary conditions for the concentration 
equation (4) become : 

(.(.u, 0) = c,, (5a) 

(.(x, ,I’) --f 0 as J“ %. (5t-J) 

In accordance with the classical boundary layer argu- 
ments. streamwise diffusion of momentum and mass 
concentration has been neglected in the respcctivc 

conservation equations (2) and (4). 

3. SOLUTION OF THE MOMENTUM 

BOUNDARY LAYER PROBLEM 

Let us now introduce new similarity variables ,/’ and 

tl such that 

$ = (UV)’ ‘.X/(P/) ((Xl) 

P/ = (air)’ ?J. (hb) 

The velocity components u and r can then be related 
to the physical stream function I/I according to its 
definition : 

l4 = Z$,l,:y = axf ‘(r/) (7a) 

I’ = - ?t~/?.u = -(NV) ’ :l’(v/). (7b) 

The continuity equation (I) is thereby automatically 
satisfied, whereas the momentum equation (2) trans- 
forms into the ordinary differential equation : 

,f”” - (,f”) 2 +,ff ” = () (8) 

subject to the boundary conditions 

f(0) = 0 (Uw) 

,f”(O) = I (‘)b) 

f”(V) -to ;Is I/ + L (9c) 

where the prime signifies differentiation with respect 
to yI. 

The above momentum boundary layer problem, 

which is uncoupled from the mass transfer problem. 
exhibits the simple similarity solution 

,f’(r) = I -exp(-v) (10) 

obtained by Crane [5]. Here. it may be worthwhtlc to 
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mention that the exact analytical solution of equations 

(8) and (9) was first noticed by Stuart [20] in a quite 

different context, while the uniqueness of this elegant 

solution was proved more recently by McLeod and 
Rajagopal [21] and Troy et al. [22]. 

4. SOLUTION OF THE CONCENTRATION 

BOUNDARY LAYER PROBLEM 

Assuming that similarity can be achieved also for 
the mass concentration problem, we introduce the 
transformation : 

c = c,O(r/) (11) 

where O(q) is a dimensionless concentration field. The 
non-linear partial differential equation (4) can now be 
represented by the ordinary differential equation : 

0” + scfo = p SCO” 

with boundary conditions 

(l-3 

O(0) = 1 

O(q)+0 as q-)co. 

(13a) 

(13b) 

Here, SC = v/D is the Schmidt number and fl= 
k,c”,- ‘/a is a reaction-rate parameter. 

Evidently, the concentration field 0 is coupled to 
the velocity field through the dimensionless stream 
function f in the non-linear mass transfer equation 
(12). However, in the special case of a non-reacting 

species (/I = 0) the non-linear term on the right-hand 
side of equation (12) vanishes, and the present con- 
centration boundary layer problem becomes formally 
equivalent with the analogous thermal boundary layer 
problem. The latter problem, in which the Prandtl 
number replaces the Schmidt number, has been con- 
sidered by several authors [S, 1 l-161. The analytical 
solution 

0 = [l-exp(-e-“)]e/(e-1) (14) 

for SC = 1 was apparently first obtained by Crane [5]. 
Numerical results for the wall gradient O’(0) for some 
other Schmidt numbers were provided independently 
by Vleggaar [ 1 l] and Gupta and Gupta 1121 and more 
recently by Jeng et al. [ 151, while series solutions for 
O(q) in terms of Kummer’s functions and incomplete 
gamma functions were developed by Grubka and 
Bobba [14] and Chen and Char [16], respectively. 

In the general case B # 0, the presence of the non- 

linearity in equation (12) makes numerical inte- 
grations inevitable. However, with the solution of the 
momentum boundary layer problem already given 
by equation (lo), the concentration equation (12) is 
written as a system of two first-order equations and 
solved numerically by means of a standard fourth- 
order Runge-Kutta integration technique. 

5. RESULTS AND DISCUSSIONS 

The non-linear concentration equation (12) subject 

to the boundary conditions (13) has been solved 

numerically for five different values of the Schmidt 
number in the range 0.01 $ SC < 100 and for five 
values of the reaction-rate parameter /I < 10, for first-, 
second- and third-order reactions. The effects of the 
three independent parameters SC, /? and n on the 
concentration distribution are shown in Figs. 1-3, 
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FIG. I. Concentration profiles O(q) for a non-reactive species 
(p = 0) with the Schmidt number as parameter. 
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FIG. 2. Concentration profiles O(q) for destructive first-order 
reactions (n = 1) for SC = 1 with the reaction-rate p as 

parameter. 
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FIG. 3. Concentration profiles O(q) for destructive reactions 
of different orders n with /j’ = 1 and SC = I. The broken line 

represents the non-reactive situation for SC = 1. 
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FIG. 4. Dependence of local Nussclt number on Schmidt 
number. The symbols denote numerical results of Grubka 

and Bobba [14] for the non-reactive case /i - 0. 

respectively, whereas Fig. 4 summarizes the computed 

wall-gradients -O’(O) reported in Table 1. Since the 
local mass transfer from the surface to the fluid is 
conventionally expressed in dimensionless form as a 

local Nusselt number : 

where 

> 
Re, ZE CI.Y-,‘I’ (16) 

is a local Reynolds number based on the surface vel- 
ocity an. the wall-gradient O’(0) becomes a crucial 
quantity in mass transfer analysis. For the sake of 
completeness, the dimensionless thickness nC of the 
concentration boundary layer is reported in Table 2 
for the same range of parameter values as those in 

Table 1. Here, Q is defined as the value of the similarity 
variable q at which the dimensionless concentration 
0 has been reduced to 0.01. 

The concentration profiles in the non-reacting case 

(/j = 0) in Fig. I show the expected Schmidt number 
dependence, i.e. the thickness of the concentration 
boundary layer decreases with SC. whereas the mag- 
nitude of the wall-gradient increases. This is in agrec- 
ment with the equivalent heat transfer problem. for 
which numerical data of Grubka and Bobba [I41 have 
been plotted in Fig. 4. 

In the limiting case G-t 0 the concentration 

boundary layer becomes so thick compared to the 
momentum layer that the decay of the concentration 
from its sheet value cu takes place in fluid at uniform 
velocity I’ = - (a~) ” ’ directed perpendicular to the 
stretching sheet. Thus, with f’- I in equation (12). 
the asymptotic solution 

Nu, = Re; - * SC, 

can readily be derived. 

( I7a) 

On the contrary, in the low diffusivity or high 
Schmidt number limit, the concentration gradients 
are contained within the innermost part of the velocity 
boundary layer, in which j”= I -exp ( -q) z ‘1. The 
local Nusselt number therefore tends to 

m the hmtt as SC + XC. The latter asymptote is con- 
sistent with the leading term in a series expansion for 
high Prdndtt numbers for the equivalent heat transfer 
problem [ 131. Interestingly, the asymptotic formulas 
for the extreme Schmidt number regimes exhibit a 
different SC dependence than those for boundary 
layers over stationary surfaces. 

The effect of a destructiw chemical reaction. i.e. 
fi > 0, is to reduce the thickness of the concentration 
layer and increase the wall transfer, as shown for 
a first-order reaction in Fig. 2. However, it can be 
observed from Fig. 3 that the effect of a first-order 

Table I. Computed values of Nu, Re, “’ 

0 0 0.01 (1.1 I .o IO 

SC n=l I, = 2 n=3 II = I ,, z: 2 ,, 7 3 II = I II = 2 II = 3 II-2 I II = 2 II - 3 

0.01 0.0099 0.0160 0.0138 0.0127 0.0367 0.0301 0.0261 0.1043 0.0851 0.0736 0.3193 0.2607 0.2257 
0.10 0.0913 0.099X 0.0959 0.0944 0.149 0.129 0.118 0.348 0.286 0.249 1.017 0.831 0.720 
1.0 0.582 0.592 0.588 0.587 0.669 0.636 0.622 1.177 1.000 0.907 3.232 2.649 3.303 
IO 2.308 2.334 2.327 2.324 2.509 2.440 2.409 3.880 3.400 3.157 10.25 8.418 7.352 
100 7.766 7.886 7.870 7.861 X.395 8.202 X.1 12 12.51 I I .07 10.35 32.47 26.70 23.36 

Table 2. Computed thicknesses q, of the concentration boundary layer 

--/r 0 0.01 0.1 I.0 IO 

SC n = I n=2 12 = 3 n=l II = 2 ,, .z 3 n-l I, = 2 n = 3 ,I =T I II = 2 II = 3 

0.01 461 285 424 447 124 317 399 43.X 167 311 14.3 63.9 207 
0.10 46.1 42.3 45.7 46.0 2x.5 42.5 44.8 12.5 31.8 39.9 4.41 16.7 31.2 
1.0 5.06 5.01 5.05 5.06 4.64 5.00 5.04 3.12 4.61 4.87 1.34 3.41 4.29 
10 0.978 0.975 0.977 0.977 0.955 0.973 0.976 0.804 0.940 0.960 0.412 0.797 0.892 
100 0.272 0.271 0.272 0.272 0.267 0.271 0.271 0.235 0.264 0.26X 0. I29 0.230 0.252 
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reaction is more pronounced than of higher-order 

reactions (n = 2 and 3). This observation is in keeping 
with the approximate solutions for a reactive flat-plate 

boundary layer due to Dural and Hines [ 191. 
For large values of the reaction rate parameter /I, 

equation (12) becomes essentially a balance between 
diffusion and reaction, while the flow dependent con- 
vection contributes marginally to the concentration 
budget. Thus, if the convective transport term ScfO’ 
is neglected, equation (12) can be integrated for n = 1 

to yield : 

0 = exp [ - (/I SC) ‘/2q] 

with the associated surface flux 

(184 

Nu, = Re;“(j SC) “’ (18b) 

and the thickness of the concentration layer being 

qC = -(~Sc))‘/21n(0.01) 

for first-order reactions. 

(18~) 

The accuracy of the approximate formulas (18) can 
be examined by comparisons with the numerical 
values provided in Table 1 and Table 2 obtained by 
direct numerical integration of the complete con- 
centration budget (12). For fi = 10 the Nusselt num- 
ber is slightly underpredicted by equation (18b) while 
the thickness of the concentration layer is somewhat 
overestimated by equation (18~). The greatest errors, 
-2.6% and + 12.9%, respectively, occurred for 
SC = 100. Although the nearly straight solid lines in 
Fig. 4 may suggest that (18b) is applicable also for 
b = 1, the accuracy of the approximate formula 
deteriorates with decreasing p. For B = 1, for 
example, the Nusselt number is underestimated by 4 

and 20% for SC = 0.01 and 100, respectively. 
It is noteworthy that an exact analytical solution of 

the complete concentration equation (12) exists for 
the particular case SC = 1, p = I and n = 2, namely : 

0 = exp(-q). (19) 

Incidentally, the concentration distribution becomes 
identical to the profile of the streamwise velocity com- 
ponent f’ in this case. The exact solution (19) of the 
non-linear ordinary differential equation (12) is useful 
as a reference against which approximate solutions 
and numerical computations may be checked. More- 
over, it is readily shown from equation (19) that the 
diffusion 0” of the reactive species from the sheet 
and into the fluid decays as exp (-q), whereas the 
destruction b SC@” of the species by the second-order 
reaction decreases as exp (-2~) with the distance 
from the sheet. The excess amount of the reactant 
diffused from the surface and not destroyed by the 
chemical reaction is exactly balanced by the con- 
vective transport of dilute fluid towards the sheet. 
Unlike the two other terms in the concentration 
budget, the convective contribution vanishes at the 
sheet as well as at infinity. Its greatest contribution, 
which occurs as q = In 2 1 0..693 1, happens to equal 

the amount of reactant being destroyed in this 
position. 

The governing concentration equation (12) is valid 

also for generative reactions (B < 0), i.e. the species 
which diffuses from the stretching sheet is also pro- 
duced by the chemical reaction in the stream. Here, 
we consider a reaction of first order (n = l), for which 
the reactive species has Schmidt number SC = 1.0. 
Some computed profiles for fi = - 0.10 are displayed 
in Fig. 5. However, an infinite number of solutions 
are available, all of which satisfy both boundary con- 
ditions defined in equation (13). Three qualitatively 
different concentration profiles were obtained, 
depending on the choice of the wall-gradient O’(0). 

First, for moderate negative wall-gradients mon- 
otonically decaying distributions were observed, 
whereas profiles exhibiting a distinct maximum were 
found for positive wall-gradients. In the latter case, 

the reaction is so efficient that the highest con- 
centration occurs in the stream rather than at the 
surface. The species is accordingly diffused from the 
concentration peak and towards the sheet. Finally, 
highly negative wall-gradients may lead to a definite 
minimum in the distribution of the concentration. 
These solutions are, however, not physically realistic 
since they exhibit regions with negative 0. 

The concentration distributions presented in Fig. 6 

for /I = - 1 .O differ from those in Fig. 5 in having an 
oscillating behaviour for large values of q. As for 

-1 1 I I I 
0 20 40 60 

11 

FIG. 5. Representative concentration profiles O(q) for gen- 
erative first-order reactions with B = -0.1 and SC = 1.0. 
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0 5 10 15 20 

rl 

FIG. 6. Representative concentration profiles O(q) for gen- 
erative first-order reactions with /I = - 1 .O and SC = 1 .O. 
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[j = -0. IO. an infinite number of solutions exist, each 
being determined by the wall-gradient. For the higher 
generative reaction-rate ([I = - 1 .O) the oscillatory 
decay to zero makes the concentration negative in 
localized areas and these solutions arc accordingly not 

meaningful from a physical point of view. 

6. CONCLUDING REMARKS 

The concentration boundary layer along a linearly 

stretching sheet is ideally suited for the assessment of 
approximate mathematical or numerical approaches 

to reactive boundary layers since the velocity dis- 
tribution is given exactly in analytical form. The non- 
linear mass concentration equation transforms into 
an ordinary differential equation, which can be solved 
numerically to an arbitrary degree of accuracy. The 
computed results show that the principal effects of a 
destructive chemical reaction are to reduce the thick- 
ness of the concentration boundary layer and increase 
the mass transfer rate from the stretching sheet to the 

surrounding fluid. It can also be concluded that these 
effects are more pronounced for a first-order reaction 
than for higher-order reactions. The nonuniqucness 
of the concentration distribution for generative first- 
order reactions has been demonstrated. An extension 
of the present analysis to viscoelastic fluids is pub- 
lished in an accompanying paper [23]. 
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